
What's New for LMDB 1.0

Howard Chu
CTO, Symas Corp. hyc@symas.com

Chief Architect, OpenLDAP hyc@openldap.org
2018-10-08

mailto:hyc@symas.com
mailto:hyc@openldap.org

2

A Word About Symas

● Founded 1999
● Founders from Enterprise Software world

– platinum Technology (Locus Computing)

– IBM

● Howard joined OpenLDAP in 1999
– One of the Core Team members
– Appointed Chief Architect January 2007

● No debt, no VC investments: self-funded

3

Intro

● Howard Chu
– Founder and CTO Symas Corp.

– Developing Free/Open Source software since
1980s

● GNU compiler toolchain, e.g. "gmake -j", etc.
● Many other projects...

– Worked for NASA/JPL, wrote software for Space
Shuttle, etc.

4

Topics

(1) LMDB so far (0.9)

(2) Coming in 1.0

5

(1) LDMB so far (0.9)

● Initially set out to replace BerkeleyDB in
OpenLDAP alone, but now supported across
multiple fields:
– OS level - rpm, git, SASL, Kerberos, Samba

– Cryptocurrency blockchains

– AI / deep learning / machine learning

– High frequency trading

– High performance computing

6

(1) LDMB so far (0.9)

● Released in 2011
– Still the world's smallest, fastest and most reliable

transactional embedded storage engine

● Now widely adopted
– Dozens of wrappers for other languages (34 at last

count)

– Deployed as primary storage backend for countless
open source and proprietary projects

7

(2) Coming in 1.0

● Support for 64bit DBs on 32bit builds (VL32)
● Page level encryption and/or checksums
● Incremental backup
● Long key support (up to 2GB keys)
● Semi-synchronous writes

8

(2) Coming in 1.0

● Headerless overflow pages
● Restructured freelist
● Raw partition support
● 2-phase commit

9

(2) Coming in 1.0

● On-disk format change
– Most of these features require a change to the

LMDB page formats

– Some of these features have been working for
years, but we didn't want to release them separately
and have to deal with multiple DB migrations

10

(2) VL32

● Optional support for larger-than-32bit databases on 32bit
builds
– Instead of using a single mmap for the entire DB, maps in chunks

of >= 16 pages at a time

– Requires some user-level caching, slower than native 32bit support
● Must track referenced pages per transaction and within the entire

environment

● Allows DBs to be used interchangeably between 32bit and
64bit machines
– If using semaphores instead of shared mutexes, DBs can be

shared by 32bit and 64bit processes on the same machine

11

(2) Page encryption

● (Never thought we'd ever do this)
– Requires app-level page caching

● to keep a decrypted copy of a page being accessed
● But we already have this, due to VL32 support

● Ciphers in user-supplied callbacks
– there will be no built in encryption or checksum

algorithms

● Needs space for per-page checksums

12

(2) Incremental Backup

● Adds transaction ID to page header
– Allows simple backup of all pages newer than a

specified txnID

– Incremental backups can easily be overlaid on top
of a snapshot from the specified txnID

13

(2) Long Keys

● Support for storing keys on overflow pages
– Key length up to 2^31 -1 bytes

– Values still limited to 2^32 -1 bytes

14

(2) SemiSync Writes

● Allow asynchronous writes without risk of
corruption
– Uses 2 new temporary meta pages for recording the

semisync commits
– Use explicit mdb_env_sync() to persist temporary

meta pages onto main meta pages

– In case of crash, un-synced commits will be lost, but
main meta pages will be intact

– Will incur additional DB growth while un-synced

15

(2) Headerless OVF

● Currently the first page in a span of overflow
pages always has a standard page header (16
bytes on 64bit build)

● So, storing a page-size value consumes two
pages, because it can't all fit on the first page

● Relevant header info will be moved into the leaf
node instead
– page number, transaction ID, checksum

16

(2) Freelist

● Currently the freelist is stored as a single record
per transaction
– performance suffers when the free space is

fragmented

● Instead, will use DUPSORT|DUPFIXED to let
LMDB store each freelist entry in arbitrary pages
– Total space requirement will be about the same
– But will be immune to fragmentation issues

17

(2) Raw partitions

● Allow storing LMDB data directly on a raw block
or character device
– Avoids all filesystem metadata overhead

● Bulk load on raw device is 2x faster than on ext4fs with
journaling disabled

● No other performance impact

– Makes maxsize discussion totally moot

– Allows exploiting special features of NVDIMMs

18

(2) 2-Phase Commit

● Add an mdb_txn_prepare() API
● Enables support for distributed transactions

– For use with slapd back-ldap / back-meta / etc.

19

